NUMERICAL STABILITY OF BLOCK TOEPLITZ ALGORITHMS IN POLYNOMIAL MATRIX COMPUTATIONS
نویسندگان
چکیده
منابع مشابه
Numerical Stability of Block Toeplitz Algorithms in Polynomial Matrix Computations
We study the problem of computing the eigenstructure of a polynomial matrix. Via a backward error analysis we analyze the stability of some block Toeplitz algorithms to obtain this eigenstructure. We also elaborate on the nature of the problem, i.e. conditioning and posedness. Copyright c ©2005 IFAC.
متن کاملBlock Toeplitz Methods in Polynomial Matrix Computations
Some block Toeplitz methods applied to polynomial matrices are reviewed. We focus on the computation of the structure (rank, null-space, infinite and finite structures) of an arbitrary rectangular polynomial matrix. We also introduce some applications of this structural information in control theory. All the methods outlined here are based on the computation of the null-spaces of suitable block...
متن کاملBlock Toeplitz Algorithms for Polynomial Matrix Null-space Computation
In this paper we present new algorithms to compute the minimal basis of the nullspace of polynomial matrices, a problem which has many applications in control. These algorithms take advantage of the block Toeplitz structure of the Sylvester matrix associated with the polynomial matrix. The analysis done in both aspects, algorithmic complexity and numerical stability, shows that the algorithms a...
متن کاملFast Matrix Polynomial Computations
Pour une matrice polynomiale P(x) de degr e d dans Mn;n(Kx]), o u K est un corps commutatif, une r eduction a la forme normale d'Hermite peut ^ etre calcul ee en O ~ (M(nd)) op erations arithm etiques, si M(n) est le co^ ut du produit de deux matrices n n sur K. De plus, une telle r eduction peut ^ etre obtenue en temps parall ele O(log +1 (nd)) en utilisant O(L(nd)) processeurs, si le probl em...
متن کاملFast Error-free Algorithms for Polynomial Matrix Computations
Matrices of pol nomials over rings and fields provide a unifying framework $r many control system design problems. These include dynamic compensator design, infinite dimensional systems, controllers for nonlinear systems, and even controllers for discrete event s stems. An important obstacle for utilizing these owerful matiematical tools in practical applications has been &e non-availability of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2005
ISSN: 1474-6670
DOI: 10.3182/20050703-6-cz-1902.00478